B.Sc./5th Sem (H)/PHS/24(CBCS)

2022

5th Semester Examination PHYSICS (Honours)

Paper: DSE 2-T

CBCS

Full Marks: 60

Time: Three Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

[Nuclear and Particle Physics]

Group - A

Answer any ten of the following questions: 10×2-20

- (p) Calculate binding fraction for ¹⁶O. Given M (*H) = 1.007825 u, M(¹⁶O) = 15.994915 u, and 1 u = 931.5 MeV.
 - (b) A 5 MV Van de Graaff generator is equipped to accelerate protons, deuterons and a sparticles. What are the maximum energies of the various particles available from the accelerator?
 - (c) Show that the mass difference of two mirror nuclei of odd A and with N and Z differing by one unit

is given by : $M_a - M_a * a_c A^{\dagger}$.

FIO

Total Pages: 19

B.Sc./5th Sem (H)/PHS/22(CBCS)

2022

5th Semester Examination PHYSICS (Honours)

Paper: DSE 2-T

[CBCS]

Full Marks: 60

Time: Three Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

[Nuclear and Particle Physics] Group - A

Answer any *ten* of the following questions: $10 \times 2 = 20$

- 1. (a) Calculate binding fraction for ^{16}O . Given M (^{1}H) = 1.007825 u, M(^{1}n) = 1.008655 u, M(^{16}O) = 15.994915 u, and 1 u = 931.5 MeV.
 - (b) A 5 MV Van de Graaff generator is equipped to accelerate protons, deuterons and α-particles. What are the maximum energies of the various particles available from the accelerator?
 - (c) Show that the mass difference of two mirror nuclei of odd A and with N and Z differing by one unit

is given by: $M_P - M_n + a_c A^{\frac{2}{3}}$.

P.T.O.

- (d) Predict the state of energy level of unpaired odd nucleon and spins and parities of the following nuclei from the single particle shell model of ³³₁₆S.
- (e) The masses of the different nuclei taking part in ${}^{7}Li_{3}(p,n)^{A}Y_{2}$ reaction in u are follows: $M({}^{7}Li_{3}) = 7.01822$, $M({}^{1}Li_{1}) = 1.00814$, $M({}^{7}n_{0}) = 1.00898$ and mass of the product nucleus = 7.01915. Calculate the Q-value of this reaction in MeV.
- (f) What is exoergic reaction? Give an example.
- (g) What do you mean by 'dead time' and 'recovery time' of a GM counter?
- (h) What are the predictions of nuclear shell model?
- (i) Write down Bohr's independence hypothesis on compound nuclear reaction mechanism.
- (i) A cyclotron has a magnetic field of 1.5 Wb/m². The extraction radius is 0.5m. Calculate the frequency of RF oscillator necessary for accelerating deuterons:
- (k) Using Gell-Mann-Nishijima relation, show that strangeness quantum number of Σ -particles is -1.
- (I) Explain parity violation in weak interaction or in Beta decay.
- (m) State with reasons whether the following reactions are allowed or forbidden.

(i)
$$e^- + e^+ \to \mu^+ + \pi^-$$
 (ii) $p + \mu^- \to n + \gamma_\mu$

- (n) What are Lepton and Baryon quantum numbers?
- (o) A π^+ meson of rest mass 273 m_e decays from rest to emit a μ^+ meson of rest mass 207 m_e with an average kinetic energy 4.2 MeV and a μ -neutrino. Calculate the energy of the μ -neutrino.

Group - B

Answer any *four* of the following questions: $5\times4=20$

- 2: What is scintillation detector? Write down the uses and limitations of the detector. 1+2+2
- 3. Derive an expression for the Coulomb energy of a nucleus ${}^{4}X_{2}$ in terms of A and Z. Give any two achievements of liquid drop model. 3+2
- Find the density of ¹²C₆ nucleus. Comment on the following properties of ²⁰⁸Ph₈₂ nucleus (i) Charge (ii) Spin (iii) Size. 2+1+1+1
 - 5. (a) What are the different modes of radioactive decays?
 - (b) Explain internal conversion process. 3
 - 6. (a) Find the lowest values of the kinetic energy of an electron and a proton causing the emergence of Cherenkov's radiation in a medium with refractive index n = 1.60.
 - (b) Calculate Compton shift in wavelength when scattering angle is 180°.

28 1 - ho

P.T.O. 229

V-5/56 - 1900

7. What are colour quarks? Why was it necessary to introduce an additional property designated as colour to quarks and antiquarks?

2+3

Group - C

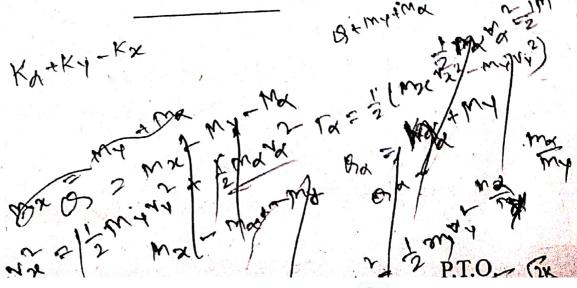
Answer any *two* of the following questions: $10 \times 2 = 20$

- What is meant by isospin? Give the value of the isospin and the z component of the isospin for (i) pions and (ii) nucleons.
 - (b) For heavy α -emitters show that the kinetic energy of α -particle is nearly equal to α -disintegration energy.
 - (c) Write down Nordheim's rules to determine the ground-state spin-parity of an odd-odd nuclei. Find the grond-state spin-party of ⁴²K nucleus. 3+2
- 9. (a) Why are the most stable nuclei found in the region near A = 60? Find the energy release, if two ²H nuclei fuse together to form ⁴He nucleus. The binding energy per nucleon of H and He is 1.1 MeV and 7.0 MeV respectively. 2+3
 - (b) What are magic number? What is the evidence for shell structure of the nucleus? Sketching the main assumption, explain the shell model of the nucleus.

1+2=2

10. (a) Discuss the energy spectrum curve from β -decay of a radioactive nuclide. Show that the law of

V-5/56 - 1900 1 20


conservation of energy and momentum are not obeyed in β -decay. 4+2

- (b) The beam of a fixed frequency cyclotron has a maximum radius of 1 m. The magnetic field induction is 1.5 tesla. Find the energy of α-particles accelerated by the accelerator.
- 11. (a) Show that the Q-value of nuclear reaction is:

$$Q = K_{\hat{y}} \left(1 + \frac{m_{y}}{M_{y}} \right) - K_{x} \left(1 - \frac{m_{x}}{M_{y}} \right) - \frac{2}{M_{y}} \sqrt{m_{x} m_{y} k_{x} k_{y}} \cos \theta$$

where, m_x : mass of incident particle, m_y : mass of product particle, M_x : mass of target nucleus, M_y : mass of product nucleus. Other symbols have usual meanings.

- (b) Explain the difference between ionization chamber, proportional counter and Geiger Muller Counter. 3
- (c) Write down and explain the semi-empirical mass formula.

